Protective effect of ferulic acid ethyl ester against oxidative stress mediated by UVB irradiation in human epidermal melanocytes.
نویسندگان
چکیده
UV solar radiation is the major environmental risk factor for malignant melanoma. A great effort is currently posed on the search of new compounds able to prevent or reduce UV-mediated cell damage. Ferulic acid is a natural compound recently included in the formulation of solar protecting dermatological products. The purpose of the present work was to assess whether its ethyl ester derivative, FAEE, could protect skin melanocytes from UV-induced oxidative stress and cell damage. Experiments on human melanocytes irradiated with UVB showed that FAEE treatment reduced the generation of ROS, with a net decrease of protein oxidation. FAEE treatment was accompanied by an induction of HSP70 and heme oxygenase, by a marked suppression of PARP activation and a significant suppression of apoptosis. Moreover FAEE prevented iNOS induction, thus suppressing the secondary generation of NO-derived oxidizing agents. FAEE may represent a potentially effective pharmacological approach to reduce UV radiation-induced skin damage.
منابع مشابه
Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses
Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8J/cm(2)) exposure. Then, we explored...
متن کاملJujube and green tea extracts protect human fibroblast cells against UVB-mediated photo damage and MMP-2 and MMP-9 production
Objective: Oxidative stress and ultraviolet B (UVB) irradiation are known as principal inducers of DNA damage and modulators of gene expression in aging process and skin photoaging, which are associated with upregulation of matrix metalloproteinases (MMPs). Because of the antioxidant capacity of jujube and green tea, we decided to determine their protective effects of human fib...
متن کاملRedox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblasts: role of vitagenes.
Skin is one of the main targets for reactive oxygen species; thus, reactive oxygen species-induced damage and protein and lipid modifications occur, and skin can undergo a wide array of diseases, from photosensitivity to cancer. In this study, human dermal fibroblasts exposed to hydrogen peroxide (0-1000 micromol/L) exhibited a marked increase in both protein carbonyls and 4-hydroxy-2-nonenal, ...
متن کاملIn vivo protective effects of ferulic acid ethyl ester against amyloid-beta peptide 1-42-induced oxidative stress.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of amyloid-beta peptide (Abeta), a peptide that as both oligomers and fibrils is believed to play a central role in the development and progress of AD by inducing oxidative stress in brain. Therefore, treatment with antioxidants might, in principle, prevent propagation of tissue damage and neurological dysf...
متن کاملEvaluation of the Efficacy of Topical Ethyl Vanillate in Enhancing the Effect of Narrow Band Ultraviolet B against Vitiligo: A Double Blind Randomized, Placebo-Controlled Clinical Trial
Background: Vitiligo is an acquired disease of skin that presents with depigmented patches due to lack of melanocytes in the epidermis. Accumulation of toxic free radicals like hydrogen peroxide in the epidermis may be responsible for melanocytes death. Since ethyl vanillate (vanillic acid ethyl ester) is a strong hydrogen peroxide scavenger, it may be effective against vitiligo. This study was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Free radical research
دوره 43 4 شماره
صفحات -
تاریخ انتشار 2009